

AIRS Clear Sky Tests Results from Simulations

Michael Gunson

Jet Propulsion Laboratory

Michael.Gunson@jpl.nasa.gov

Tel: 818 354 2124

AIRS Clear Sky Tests Objectives

- Hierarchy of clear sky tests have been established to meet different objectives
 - Simplest tests required for first data analyses and calibration at instrument activation
 - Night time comparison of short wave channels with SST
 - Tests required based on AIRS radiances alone (at L1b) before retrievals are performed and independent of microwave data availability
 - fov_clear_flag set from threshold tests
 - CIrFrcVis set from cloud detection in vis/NIRpixels
 - Tests required with microwave and infrared radiances performed before main retrieval steps
 - Comparison of predicted AIRS radiances based on AMSU channels
 - Final tests based on retrieval process information and results of cloudclearing
 - clear_flag set on test to largest eigenvalue from the first cloud clearing

- All proposed clear tests evaluated against AIRS/AMSU/HSB simulated data in July
 - Radiances simulated with and without cloud effects
 - V2_2_0_aa simulation data
 - Based on "AIRS Level 2 Simulations System Description Document"
 Version 1 with new cloud model which reduced overall cloud cover but decorrelated the cloud fraction between AIRS footprints
 - Problem identified NO CLOUDS IN LOWEST LAYER
 - Results reported in ADFM #531 (Chen & Gunson, 8/10/01)
 - Analysed simulation data for bias estimate and tested thresholds used in various tests

Group 1 - Night Ocean

- Simplest test for clear sky conditions on individual AIRS footprint compares shortwave channel (2616 cm⁻¹) to SST
- Comparison improved by small atmospheric transmission correction and removal of scan angle dependence
- Essential for "crossing the bridge"

mrg

- Evaluated the thresholds by comparing performance for simulations without clouds
- Value stored in clear_flag_4window

mrg

- Individual tests for the AIRS footprint based on
 - $-T_s T_b(2616)$
 - $-T_b(2616) T_b'(8\mu m)$
 - $-T_b(2616) T_b'(11\mu m)$
 - T_s T_s (longwave)
- Individual tests saved in fov_ocean_cc_test and used to set fov_clear_flag when additional criteria satisfied to eliminate sea ice
 - T_b > 268 K (@ 965 cm⁻¹)
 - T_s > 271.35 K
- Group 3 equiv. fov_clear_flag

November 6, 2001 mrg

AIRS Clear Sky Tests

1000

November 6, 2001

mrg

AIRS Clear Sky Tests

- Tests avoid shortwave channels
- Simplest test based on 11 µm split window channels which is much cruder requiring a threshold of 3 K
- All thresholds reevaluated and consequently the yield also changes

Bias - Day Ocean

November 6, 2001 mrg

AIRS Clear Sky Tests

- Uses AMSU channels to predict IR brightness temperatures
 - T_s AMSU(ch. 1-7) T_b (2390 cm⁻¹)
 - $T_b(2558 \text{ cm}^{-1}) T_b(900 \text{ cm}^{-1})$
 - $T_b(2446 \text{ cm}^{-1}) T_b'(8\mu\text{m})$
 - $-T_s T_s' (8 \& 11 \mu m)$
- Values saved in
 - fov_rad_resid
 - fov_swlw_resid
 - fov_psw_fr_lw_resid
 - fov_psst_resid
- Used to set fov_clear_flag
- Prelim_clear_flag if 3x3 AIRS fov's satisfy coherence test over AMSU fov satisfies first test with rms < 0.0026

Bias - Day Land

AIRS Clear Sky Tests

Conclusions

- Implemented number of tests and flags in the data processing system (SPS) to suit range of conditions and provide flexible framework for post-launch evaluation
- Simulations are double-edged sword
 - Help to set up framework and test tools
 - Errors and assumptions in simulation can be misleading results in either bias or yield
- New V2_2_2 simulation will be used to reevaluate all cloud detection schemes in coming weeks and cloud-cleared radiances
 - New cloud model with decorrelated cloud fractions and two cloud layers
- Post-launch will roll-out the AIRS system (for calibration and validation) from Night-Ocean > Day-Ocean > Day-Land > Night-Land

Note: new AIRS technical website will be at http://airsteam.jpl.nasa.gov/